Artikel-Filter
IFA
MEDICA
Akkreditieren Sie sich hier zu den kommenden PREVIEWs

Maschinelles Lernen über Grenzen des Bekannten hinaus

Neue Methode ermöglicht genaue Extrapolation

IST Austria - Um den sicheren Betrieb eines Roboters zu gewährleisten ist es entscheidend zu wissen, wie der Roboter unter verschiedenen Bedingungen reagiert. Aber woher soll man wissen, was einen Roboter stört, ohne ihn tatsächlich zu beschädigen? Eine neue Methode, die Wissenschaftler des Institute of Science and Technology Austria (IST Austria) und des Max-Planck-Instituts für Intelligente Systeme entwickelten, ist die erste Methode für maschinelles Lernen, welche Beobachtungen, die unter sicheren Bedingungen getroffen wurden, nutzt, um genaue Vorhersagen für alle möglichen Bedingungen zu treffen, die von der gleichen physikalischen Dynamik bestimmt werden. Die Methode ist speziell für reale Situationen entwickelt und bietet einfache, interpretierbare Beschreibungen der zugrundeliegenden Physik. Die Forscher stellten jetzt ihre Ergebnisse auf der diesjährigen renommierten International Conference for Machine Learning (ICML) vor.

In der Vergangenheit konnte maschinelles Lernen Daten nur interpolieren – also Vorhersagen treffen über eine Situation, die „zwischen“ anderen, bekannten Situationen liegt. Maschinelles Lernen konnte nicht extrapolieren – das heißt es konnte keine Vorhersagen treffen über Situationen die außerhalb der bekannten Situationen liegen, da es nur lernt, bekannte Daten lokal so genau wie möglich zu modellieren. Das Sammeln von genügend Daten für effektive Interpolation ist außerdem zeit- und ressourcenintensiv, und erfordert Daten aus extremen oder gefährlichen Situationen. Georg Martius, ehemaliger Postdoc des IST Austria und ISTFELLOW und seit 2017 Gruppenleiter am MPI für Intelligente Systeme in Tübingen, Subham S. Sahoo, ein PhD Student am MPI für Intelligente Systeme, und Christoph Lampert, Professor am IST Austria, entwickelten nun eine neue maschinelle Lernmethode, die diese Probleme anspricht. Es ist die erste maschinelle Lernmethode, die präzise für unbekannte Situationen extrapoliert.

Das Besondere der neuen Methode ist, dass sie versucht, die wahre Dynamik der Situation herauszufinden: Gegeben der Daten liefert sie Gleichungen, die die zugrundeliegende Physik beschreiben. „Wenn man diese Gleichungen kennt“, sagt Georg Martius, „dann kann man sagen, was in allen Situationen passieren wird, auch, wenn man sie nicht gesehen hat.“ Das ist, was es der Methode ermöglicht, zuverlässig zu extrapolieren, und sie so einzigartig unter maschinellen Lernmethoden macht.

Die Methode des Teams ist in mehrfacher Hinsicht einzigartig. Erstens waren die Lösungen, die maschinelles Lernen zuvor erstellte, viel zu komplex, als dass ein Mensch sie verstehen könnte. Die Gleichungen, die aus der neuen Methode resultieren, sind viel einfacher: „Die Gleichungen unserer Methode sind etwas, was man in einem Lehrbuch sehen würde – einfach und intuitiv“, sagt Christoph Lampert. Letzteres ist ein weiterer Vorteil: Andere maschinelle Lernmethoden geben keinen Einblick in den Zusammenhang zwischen Eingaben und Ergebnissen – und damit auch keine Einsicht darüber, ob das Modell überhaupt plausibel ist. „In allen anderen Forschungsbereichen erwarten wir Modelle, die physikalisch Sinn machen, und die uns sagen, warum“, ergänzt Lampert. „Das sollten wir auch vom maschinellen Lernen erwarten und das ist, was unsere Methode bietet.“ Deshalb basierte das Team seine Lernmethode auf einer einfacheren Architektur als übliche Methoden, um die Interpretierbarkeit zu gewährleisten und sie für physikalische Situationen zu optimieren. In der Praxis bedeutet das, dass weniger Daten benötigt werden, um die gleichen oder sogar bessere Ergebnisse zu erzielen.

Und es ist nicht alles Theorie: „In meiner Gruppe arbeiten wir an der Entwicklung eines Roboters, der diese Art des Lernens nutzt. In Zukunft würde der Roboter mit verschiedenen Bewegungen experimentieren und dann in der Lage sein, die Gleichungen herauszufinden, die seinen Körper und seine Bewegung beschreiben, so dass er gefährliche Aktionen oder Situationen vermeiden kann“, fügt Martius hinzu. Während hauptsächlich an der Roboteranwendung geforscht wird, kann die Methode mit jeder Art von Daten, von biologischen Systemen bis hin zu Röntgenübergangsenergien, eingesetzt werden und auch in größere maschinelle Lernnetzwerke integriert werden.

Die Forschung wurde aus dem ISTFELLOW-Programm, einem Marie Skłodowska-Curie COFUND Förderung, das von IST Austria und der Europäischen Union im Rahmen des Forschungs- und Innovationsprogramms „Horizont 2020“ kofinanziert wird, gefördert. Dieses Programm wurde inzwischen durch ein weiteres COFUND Förderung, das ISTplus-Programm, abgelöst, das für Bewerbungen von qualifizierten Postdocs aus aller Welt offen ist.


Link zur Konferenz International Conference for Machine Learning (ICML)

www.icml.cc/

PREVIEW onlinePressekontakt
Institute of Science and Technology Austria (IST Austria)
Kommunikationsbüro
Elisabeth Guggenberger
Media Relations
Tel: +43 (0)2243 9000 1199
eMail: elisabeth.guggenberger@ist.ac.at



Download

Ein Roboter muss seinen Körper und die Umwelt kennenlernen. Er macht verschiedene Testbewegungen und verwendet den Algorithmus. Dann kann er vorhersagen, was bei größeren Bewegungen und höheren Geschwindigkeiten passiert.
Quelle: IST Austria
ANZEIGE
ANZEIGE


AR und KI erobern Shopping-Welt

RommAR hebt Kauferlebnis auf neues Level
- PREVIEW online - Wer Möbel online kauft, rätselt oft, wie sich der neue Stuhl oder das Sofa in der Wohnung wohl machen. Die perfekte Lösung auf dieses Problem bietet die Software „RoomAR“ „Es geht hier um ...



Digitale Gesellschaft - Open Knowledge

Ringvorlesung für jedermann
- In einer vernetzten, digitalen Gesellschaft ist ein freier und unbeschränkter Zugang zu Wissen und Information zu jeder Zeit an jedem Ort möglich geworden. Die Forderung nach Offenheit – Openness ist in ...



Erstmals UHD im Kabel-Free-TV

Telekom erweitert Senderangebot
DTAG - Mit „Insight TV UHD“ nimmt die Telekom als erster Kabelnetzbetreiber in Deutschland einen frei empfangbaren UHD-Sender in ihr Portfolio auf. Das Programm bietet Action und Extremsport, Abenteuer ...



CES 2019: Diese smarten Lösungen zeigt Bosch

Sechs Honorees für Bosch bei den CES Innovation Awards
Bosch - Vom 8. bis 11. Januar 2019 präsentiert Bosch auf der CES 2019 in Las Vegas, Central Hall, Stand #14020, technische Antworten auf aktuelle Herausforderungen wie Verstädterung, Bevölkerungswachstum ...



Machtlos gegen KI-Cyber-Attacken?

Hacker rekrutieren jetzt Roboter für Cyber-Angriffe
Sopra Steria - Unternehmen müssen sich mit einer neuen Art von Cyberattacken befassen. Hacker nutzen verstärkt Künstliche Intelligenz (KI) für ihre Angriffe und setzen damit die ...



Osram auf der CES 2019: Photonik für ein besseres Leben

Technologien für Mobilität, Vernetzung und Gesundheit
Osram - Auf der CES 2019, einer der weltgrößten Messen für Unterhaltungselektronik, präsentiert Osram neueste Technologien in den Bereichen Mobilität, Vernetzung, Sicherheit sowie Wohlbefinden und Gesundheit. ...



Alexa fragt Wieso? Weshalb? Warum?

Gratis Quizen auf Zuruf mit Alexa und Google Assistant
Ravensburger - Ein Quiz auf Zuruf: Ravensburger hat das „Wieso? Weshalb? Warum? Quiz“ für Amazon Alexa und den Google Assistant entwickelt. Ab sofort können Kinder und Familien ihr Sachwissen über diese ...



Bankraub 3.0: Android Trojaner räumt PayPal-Konten leer

Die Zwei-Faktor-Authentifizierung wird umgangen
ESET - Experten des europäischen IT-Security Herstellers ESET haben einen neuen Android-Trojaner enttarnt, der im großen Stil PayPal-Nutzer ausraubt. Die Verbreitung findet über Drittanbieter-App-Stores sowie ...



ANZEIGE
Presse-Mitteilungen   RSS-Feed
ANZEIGE
About
PREVIEW online ist ein multimediales News-Portal für technisch Interessierte.
Ohne langes Suchen und Site-hopping finden Sie hier gewünschte Informationen. Mit einem Blick sehen Sie auf PREVIEW online sofort, welche Medien zu den jeweiligen Themen vorhanden sind. Eine optimale Kombination aus Kategorien, Schlagwort- und Volltextsuche erleichtert Ihnen das Finden gewünschter Informationen erheblich. Wenn Sie Wichtiges über Themen, Unternehmen, News, die Sie interessieren, nicht verpassen möchten, abonnieren Sie sich unseren NEWS-Allert.
Alle Infos sind nur 1 Klick entfernt - das ist PREVIEW online.
IMPRESSUM / DATENSCHUTZ